Chapter 01 – Computer Science (Class 10)

Created by NBF StudyHub (YouTube)

1. Explain decimal, binary, octal, and hexadecimal number systems with examples.

Ans:

These are different number systems used in computing:

Decimal Number System

Base: 10Digits: 0-9

· Used by humans in daily life

Example: 254 (means 2×100 + 5×10 + 4×1)

Binary Number System

Base: 2

Digits: 0 and 1

Used by computers

• Example: 1010 (means $1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 = 10$ in decimal)

Octal Number System

Base: 8Digits: 0–7

Used as a shorthand for binary

Example: 17₈ = 1×8 + 7×1 = 15 in decimal

Hexadecimal Number System

Base: 16

Digits: 0-9 and A-F (A = 10, F = 15)

Used in memory addresses and color codes

Example: 1F₁₆ = 1×16 + 15 = 31 in decimal

☐ Summary Table:

System	Base	Digits Used	Example
Decimal	10	0–9	254
Binary	2	0, 1	1010
Octal	8	0–7	17 ₈ = 15 ₁₀
Hexadecimal	16	0-9, A-F	1F ₁₆ = 31 ₁₀

2. What is 2's complement, and why is it used? Give examples.

Ans: 2's complement is a method used to represent **negative binary numbers** in computers.

♦ How it works:

To find the 2's complement of a binary number:

- 1. Invert all bits (0 becomes 1, and 1 becomes 0).
- 2. Add 1 to the result.

♦ Why it's used:

- Makes subtraction easy using addition.
- Helps the CPU process both positive and negative values.

♦ Example:

Find 2's complement of 5 (0101) in 4-bit binary:

- 1. Invert bits \rightarrow 1010
- 2. Add 1 \rightarrow 1010 + 0001 = 1011 \rightarrow This is -5 in 2's complement.

3. Define the terms Overflow and Underflow. Explain Overflow in number system with one example.

Ans:

Overflow:

Occurs when the result of a calculation is **larger than the maximum value** the system can store.

Underflow:

Occurs when the result is **too small (close to zero)** for the system to represent.

Overflow Example:

In 4-bit binary, maximum positive number is 0111 (7).

If you add 0100 (4) + 0101 (5) = 1001 (9), it causes overflow as 9 cannot be represented in 4-bit signed binary.

4. What is the significance of ASCII and Unicode character coding schemes?

Ans: ASCII and Unicode are **character encoding schemes** that convert text into numbers so computers can understand it.

♦ ASCII (American Standard Code for Information Interchange):

- Uses 7 or 8 bits.
- Can represent 128 or 256 characters (mainly English).
- Example: A = 65, a = 97.

Unicode:

Uses 8 to 32 bits.

- · Can represent all major languages of the world.
- Example: A = U+0041, Urdu character "I" = U+0627.

♦ Significance:

- ASCII is suitable for basic English text.
- Unicode supports globalization, multilingual text, and emojis.

5. What is an operating system? Explain any five tasks/functions of OS.

Ans: An Operating System (OS) is software that acts as an interface between the user and hardware. It manages system resources and provides essential services.

Five functions of OS:

- Process Management Controls running programs.
- Memory Management Allocates memory to programs.
- 3. File Management Manages files and folders.
- 4. **Device Management** Controls hardware like printer, keyboard, etc.
- 5. **User Interface** Provides GUI or CLI to interact with the system.

6. Explain any four types of operating systems.

Ans:

1. Batch Operating System:

- Processes jobs in batches with no interaction.
- Example: Old IBM systems.

2. Time-Sharing Operating System:

- Allows multiple users to use the system at the same time.
- Example: UNIX.

3. Real-Time Operating System (RTOS):

- Responds instantly to inputs, used in critical systems.
- Example: Medical machines, autopilot.

4. Distributed Operating System:

- Controls multiple computers working together as one.
- Example: LAN-based system sharing tasks.

7. How operating system manages applications? Explain five states of a process with diagram.

Ans:

The OS manages applications by **allocating CPU time**, **memory**, **and I/O devices**. It schedules processes, prevents conflicts, and ensures smooth execution.

Five Process States:

- 1. New Process is being created.
- Ready Waiting to be assigned to the CPU.
- Running Instructions are being executed.
- 4. Waiting Waiting for I/O operations.
- Terminated Process has finished execution.
- You may draw the diagram like this in exams:

$$[\text{New}] \rightarrow [\text{Ready}] \rightarrow [\text{Running}] \rightarrow [\text{Terminated}]$$

$$\downarrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad [\text{Waiting}] \leftarrow -----$$

8. Explain the role of Integrated Development Environments (IDEs) in the software development process, including specific features that enhance programming efficiency.

Ans:

An IDE is a software suite that provides tools for writing, testing, and debugging code.

♦ Key Features:

- Code Editor: With syntax highlighting.
- Compiler/Interpreter: To convert code to machine language.
- Debugger: To find and fix errors.
- Auto-complete: Suggests code while typing.
- Version Control: Tracks code changes.

♦ Role in Development:

IDEs **increase coding speed**, reduce errors, and help beginners and professionals build software efficiently.

9. What is software hosting? Explain On-Premises and Cloud hosting. Also give two pros and cons of each.

Ans:

Software Hosting refers to running and storing applications on servers.

On-Premises Hosting:

Software is hosted on organization's own servers.

✓ Pros:

- 1. Full control over data
- 2. High security (if well managed)
 - X Cons:
- 3. Expensive hardware setup
- 4. Limited scalability

♦ Cloud Hosting:

Software is hosted on remote servers via the internet.

Pros:

- 1. Cost-effective and scalable
- 2. Accessible from anywhere

X Cons:

- 3. Depends on internet connection
- 4. Less control over data

The End

Subscribe for Learning